A "Natural" Sewage Treatment System

Problem: You produce a large recreational event that draws 100,000 people from all over the world for only four days out of the year. This many people produce more than 1 million gallons of waste during four days. Furthermore, your event is isolated from the city—and there are no toilet facilities nearby, not even a Kwik-Gyp store. There are environmental standards for disposing of this waste, and you cannot break the law.

What do you do?

One possible solution is to run wastewater trunk lines from your facility to a municipal treatment system. If you're lucky, then you're close enough so that this would not be too expensive. If you're unlucky, and the nearest connection point is several miles away, then the expense could be several million dollars.

Another solution is to set up a line of portable chemical toilets, which are universally unappealing and incur significant trucking and other disposal expenses.

And another solution is to build a sewage treatment plant on site. However, conventional sewage treatment plants are expensive to build and operate, and they must be continuously supplied with waste in order to "feed the bugs" that break down waste; these systems do not work well with only the occasional "batch loads" of waste produced during your infrequent events.

In real life, the National Hot Rod Association (NHRA) has experienced this dilemma: every year 100,000 thrill-seekers attend Gatornationals, a four-day national drag racing event held in Gainesville, Florida. Until recently, the isolated race track was fully equipped, except for toilet facilities. Now it even has flushing toilets.

NHRA's solution, in close cooperation with the Gainesville Regional Utilities (GRU), was to design and build an innovative "constructed wetlands" for primary, secondary and tertiary sewage treatment. The system is unique because of its ability to accept sudden and heavy untreated waste loads after prolonged idle periods. And unlike the many acres of wetlands used in some places for tertiary wastewater treatment, this entire compact system occupies less than five acres.

The NHRA/GRU system takes advantage of a new combination of aeration ponds, a gravel denitrification bed, and flow-through ponds filled with aquatic plants for final "polishing".

The resulting treated water meets required environmental standards, and is being used in two ways. Some is diverted for use in on-site fishponds; and some is sent to an automatic sprinkler system which irrigates an on-site pine-tree plantation.

During racing and other recreational events, the system acts as a wastewater treatment plant; during the rest of the year, it acts as an aquaculture farm, capable of supporting the commercial growth of fish, crayfish, shrimp and other freshwater creatures. The aquaculture products and the irrigated pulp-timber can be sold to help pay for the system's overall construction and operating costs.

After two years of operation, the NHRA raceway wastewater treatment system has been declared a success.

[See Waste on Page 4]
[From Waste on Page 1]

The aquaculture part of the system was designed and built under the guidance of researchers Dr. Jerome Shireman and Douglas Colle, and visiting Polish fisheries experts, husband and wife Drs. Karol and Wanda Opuszynski, all of the Department of Fisheries and Aquatic Sciences of the University of Florida.

The Site

The compact five acre treatment facility operates in four phases, and releases treated water on site.

Phase 1 (Gatortnationals phase)

During this phase, a primary objective is to minimize odors by supplying oxygen by aeration. During racing events, untreated wastewater flows from restrooms into the 1/2-acre lagoons, which are equipped with large floating aeration pumps. The aeration is turned on and allowed to run continuously. During this phase, much of the organic matter in the wastewater is metabolized by bacteria, but little nitrification is accomplished.

Phase 2 (Nitrification phase)

During this phase, ammonia in the wastewater is oxidized to nitrite and then to nitrate. Continuing aeration increases the population of and suspends waste-eating bacteria (Nitrosomonas), and helps remove total suspended solids (TSS) and reduce biological oxygen demand (BOD). (BOD is the amount of oxygen consumed by bacteria as they convert and use the organic waste materials.) During this phase, too, water alkalinity is reduced to levels safe enough for fish.

Phase 3 (Denitrification phase)

Denitrification is carried out in the gravel denitrification bed (GDB). During this phase nitrite and nitrate in the water are converted to nitrogen gas, which disappears into the atmosphere. Sugar is injected into the wastewater to establish and maintain high bacterial populations for the denitrification reactions.

The GDB is a plastic-lined pit filled to a five foot depth with 1-inch diameter gravel. In the GDB, water is fed to the bottom of the bed, and is distributed throughout the bottom by a network of pipes. The water percolates upward through the rocks and drains at the top. The water is circulated between the GDB and the aeration lagoons until bacterial action has reduced the ammonia nitrogen to below 1.0 mg/l and the total nitrogen to less than 10 mg/l.

Simplified schematic of the Gainesville Raceway Water Reclamation Facility. Raw wastewater is pumped from the restrooms to the aeration lagoons, to the gravel denitrification bed, and then to the aquatic plant filtration ponds. Polished water is then diverted to aquaculture fish ponds, or to an irrigation system being used to grow pine trees. Cultured fish and pine trees may be sold to offset overall wastewater treatment costs.
Videophile

Two more video programs have been released by the Center for Aquatic Plants, bringing the total number to some 15 productions relating to aquatic plants and their management. They are:

Maintenance Control Of Aquatic Weeds--What It Is Not!

1993, 12 minutes.

This program presents the concept of maintenance control, "the most environmentally sound and economical method of aquatic plant management." Joe Joyce, Ph.D., explains how it reduces management costs, herbicide use and overall impacts of aquatic weeds and their management.

Florida Lakewatch--Join The Team!

1993, 10 minutes.

This program describes Florida LAKEWATCH, a program wherein citizen volunteers regularly take water and algae samples, and Secchi disc readings in an effort to track the water quality changes of lakes and rivers. The samples are analyzed at the University of Florida Department of Fisheries and Aquatic Sciences, and the resulting data are made available to volunteers and state resource management agencies.

Other video programs from the Center
Florida's Aquatic Plant Story
What Makes a Quality Lake?
Isokopga--Lake of Legends
Calibration--A Field Approach
How to Determine Areas and Amount of Aquatic Herbicide to Use

AQUATIC AND WETLAND PLANT IDENTIFICATION SERIES:
Floating and Floating-Leaved Plants
Emerged Plants - Part I
Emerged Plants - Part II
Submerged Plants - Part I
Submerged Plants - Part II
Grasses, Sedges and Rushes - Part I
Grasses, Sedges and Rushes - Part II

Welcome Back!

We are pleased to announce that AQUAPHYTE once again is available to subscribers overseas. We look forward to sharing information with our more than 1,000 friends in other countries. Please keep us advised of address corrections or of colleagues who may wish to receive the newsletter.

Remember to share your work with the readers of AQUAPHYTE by contributing reprints to the APIRS database. See FROM THE DATABASE, page 8-11.

APIRS Update

From approximately 5,000 records ten years ago, the Aquatic Plant Information Retrieval System (APIRS) has grown to a collection of more than 34,000 records. They include books, articles, abstracts, proceedings, management plans, and now, videos.

APIRS spans all types of research including plant physiology, taxonomy, weed control methods, utilization as animal feed or pollution control, restoration of freshwater ecosystems, constructing wetlands for wastewater treatment, aquascaping, value as wildlife habitat, and more.

Last year, more than 700 searches of the database were performed for a yield of almost 51,000 citations. Hard copies of 95% of all records are on file in the APIRS library.

Searches of the APIRS database continue to be provided free of charge, but with the expectation that reprints and publications lists will be contributed in exchange.

We encourage researchers throughout the world to contribute reprints or photocopies of their work for inclusion in the APIRS collection.

Aquatic Plant Drawings

Do you need line drawings of aquatic plants to enhance a report, book or journal article or to illustrate a pamphlet, sign or display? Line drawings of over 60 aquatic plants are available from the APIRS Office of the Center for Aquatic Plants. A set of the entire collection of illustrations can be provided, or drawings of specific plants may be requested. The botanical illustrations may be used for educational or scientific purposes only. (Commercial use is prohibited.) The drawings are provided free of charge. However, in exchange, users are requested to submit any publications in which the drawings are used. Full acknowledgement is required.

CENTER FOR AQUATIC PLANTS
Institute of Food and Agricultural Sciences
University of Florida
7922 N.W. 71st Street
Gainesville, Florida 32606
(904) 392-9613

Dr. Joseph Joyce, Director
Phase 4 (Polishing phase)

In this phase, treated wastewater is drained from the aeration lagoons into two long, narrow, flow-through aquatic vegetation ponds. One pond is filled with the submersed plant, hydrilla (*Hydrilla verticillata*), the other is covered over with the floating plant, duckweed (*Lemna spp.*).

In these ponds, the already treated wastewater is "polished" for use as "make-up water" in the adjacent aquaculture ponds and for ultimate release into the raceway's spray irrigation system.

One purpose of the vegetation ponds is to further reduce the suspended solids (TSS) of the wastewater. This is accomplished mainly by the hydrilla, where the large leaf surface area of the submersed plants act as a natural filter and provides much more substrate for the beneficial wastewater cleansing bacteria.

Another purpose of the vegetation ponds is to reduce the nitrogen and phosphorus in the wastewater. The constantly growing aquatic plants utilize nutrients, and greatly reduce nutrient availability to algae. Reducing algal density makes the water much clearer.

Aquaculture Ponds

For thousands of years, Oriental cultures have been using human and animal wastewater to culture fish and other food animals. Shireman and his researchers say their system is simply a more modern version of this age-old, completely safe and efficient way of growing food.

While finishing the wastewater to required standards, the aquatic plants are regularly harvested and fed to the plant-eating fish being grown in the aquaculture ponds. Harvesting the plants promotes their biomass production, thus further increasing their efficiency for cleansing wastewater, and making more plants available for aquaculture production.

In the present case, the fish being grown are grass carp (*Ctenopharyngodon idella*), which in Florida are used for aquatic weed control, and which elsewhere are used for food. Hydrilla is a favorite food of grass carp, and duckweed is a perfect size for growing fingerlings. In addition, blue tilapia and bighead carp have also been raised in these ponds.

However, there is no reason to limit aquaculture to these kinds of fish--other fish may be grown for food or re-stocking programs, or other freshwater animals such as shrimp or crayfish may be cultured.

Results

Costs

The construction cost of the present facility, approximately $340,000, was less than one-third that of a conventional system of the same size. In addition, there are no high on-going costs for continuous operational preparedness or for full-time personnel. Operating costs have been estimated at approximately $12,000 per year.

Water Quality Standards

The finally polished water which is disposed of on-site to grow a pine plantation exceeds the standards required by the Florida Department of Environmental Regulation (FDER). These requirements are 20 ppm BOD, 20 ppm TSS, or 90% removal, whichever is greater; and 12 ppm ammonia nitrogen. Chlorine is applied before release to reduce the fecal coliform to less than 100/ml.

Aquaculture Value

The grass carp grown in the fish ponds may be sold in Florida for aquatic weed control. At the common sales price of $6 for a (10-inch fish), the value of the fish grown in these ponds has been estimated at $24,000 per hectare.

The system has worked well during two Gatornation events, each of which produced "batch loads" of more than 1 million gallons of wastewater during the four days of races. By all measures, this unique and compact "natural" wastewater treatment system must be judged a success.

For more information on this "constructed wetlands" system, contact Dr. Jerome Shireman, Department of Fisheries and Aquatic Sciences, 7922 NW 71st Street, Gainesville, Florida 32607, (904) 392-9617.

Chemist Dr. Wanda Opuszynska, takes one of her last water samples at the raceway before returning to her native Poland.
ecology of river-weeds stimulates the imagination. Plants grow tenaciously attached to rocks and other solid substrata in rushing torrents of tropical river-rapids and plummeting waterfalls. However, although a few general accounts of their seemingly bizarre morphology, anatomy, and modes of reproduction are available, virtually nothing is known in way of detail for any of the species. In fact, understanding of basic biology of these fascinating plants could provide valuable insight into the evolution of aquatic plants in general and man's impact on the aquatic environment.

In contrast to most other families of strictly aquatic flowering plants that possess at most 17 genera and seldom more than 30 species, the river-weed family contains 48 genera and 268 species. River-weeds have adapted well to, and flourish within, this extreme aquatic habitat.

Podostemaceae are pantropical. Few species occur in temperate regions. Podostemum ceratophyllum occurs in eastern United States and Canada and is the only temperate New World species. Thus, it is not surprising that aquatic biologists in North America typically know little of the family.

General life history features of river-weeds reflect the nature of the seasonal habitat in which they occur. River-weeds primarily occur in rivers that have a distinct seasonality; high water levels followed by a low flow period. Vegetative growth takes place during the period of high water when the plants are submersed. River-weeds occur in areas of direct sunlight and well aerated water. Plants grow attached directly to solid substrata (typically rocks) by means of adhering roothair-like rhizoids and fleshy expanded holdfasts termed "haptens." Mature plants are submersed in the swiftly moving water, from which they derive nutrients and dissolved gases. Podostemaceae do not fit the classical root-shoot model typical of most flowering plants. More akin to the seaweeds, the prostrate axis (the "root") serves primarily as an anchoring organ and seems to play no role in nutrient or water uptake.

Only after the water level drops does flowering take place. Flowering is distinctly aerial and both wind and insect pollination have been reported. The capsular fruit of river-weeds requires desiccation to deliquesce. Seeds are initially shed passively onto the rock. Water dispersal is a likely mode of subsequent transport of seed, although dispersal between river systems has also been attributed to birds.

The seed and seedling attachment stages seem especially vulnerable periods in the life cycle of river-weeds. A protective covering of soil or leaf litter that is directly linked to the seed biology of most angiosperms is lacking. For a river-weed plant to become established from seed, two critical attachment phases must occur. First, a seed must attach to, and germinate upon, the surface of a rock. This is accomplished via the outer rather mucilaginous layer of the seed coat. When hydrated, these cells expand, and upon drying adhere the seed firmly to the substratum. Successful attachment of the seed seems most likely when the rock is dry (low water period). Secondly, the seedling must become established. The seed germination and seedling attachment phases occur when the rock level is high, i.e., in rushing current. Immediately after germination the projecting seedling bends toward the rock and the apex flattens against it. Elongate extensions of the epidermal cells of the seedling radical secrete a substance ("podost-grip") that affixes the seedling.

Inadequate collections in herbaria are a central problem in dealing with the taxonomy of river-weeds. Species are generally represented by few, or often only one, collection from large geographic areas, and those specimens that are available are often incomplete. It seems that the life cycle of these plants has been a major hindrance to developing adequate collections. An additional factor seems to be the general lack of inclination of botanists to visit river-rapids in search of plants. Clearly a concerted effort is needed to collect complete specimens. Maximum vegetative growth of river-weeds is when the plants are submersed, thus the largest leaves are collected prior to flowering. However, when plants are exposed, and flower, the mature leaves are often shed. Smaller secondary leaves may be produced subsequently, often with a markedly different appearance. Finally at the time of mature capsule formation the leaves have long since died back. Thus it is necessary to visit a population repeatedly or for a duration of several weeks to collect all phases of the life cycle. All phases are needed for the most meaningful taxonomic work.

Numerous authors have noted the high level of endemism in the river-weeds, i.e., species that occur in only a single set of river-rapids or a single river. The species in the new world illustrates this nicely. From P. Van Royen's early 1950s treatment, it is evident that 14 of the 19 genera contain endemic species. About 48% of all new world species are endemic. However, because of
the need for taxonomic work it is unclear what proportion of the endemism is real versus taxonomic artifact. Here too, the inadequate collections of specimens is a hindrance to interpreting the significance of the purported levels of endemism. Are endemics actually more widespread, or perhaps environmental forms of other species? These questions cannot currently be addressed.

Moreover, a range of intriguing evolutionary questions must wait to be addressed until the taxonomic framework is better established. For example, how has the unidirectional flow of the medium in which river-weeds grow affected gene flow? How is gene flow affected upstream, or between drainage basins? What role has habitat versus biological factors played in speciation? The river-weed family also provides an opportunity to test evolutionary theory, i.e., the overall paradigm that predicts slow evolutionary rates, and thus small taxonomic size, of aquatic angiosperm groups. Why are there so many species of river-weeds? What role does the strong attachment of the plant to the substratum play? The high degree of flowering of most river-weeds also contrasts markedly with the low incidence of flowering of many aquatic plants. What significance is this to the evolution of the group? We must know what the bounds are between species in order to address these questions.

From a conservation perspective it is most prudent to assume that the high level of endemism in river-weeds is real until additional evidence suggests otherwise. Given that high levels of endemism and conservation typically go hand in hand what are the current and projected conservation concerns for river-weeds? This is unclear. Rivers are utilized heavily by people and represent the most heavily polluted of tropical aquatic habitats (Sioli 1986). As human populations increase and development continues in tropical regions so will utilization of rivers for domestic, industrial and agricultural needs. These activities are likely to have detrimental impacts on river-weeds via pollution, water level manipulation, and siltation from construction and agriculture.

Even though little ecological work has been done on river-weeds it is evident that they are sensitive to water pollution. For instance, populations of Podostemum ceratophyllum in New Hampshire were decimated after apparent industrial water disposal in the early 1970s (Philbrick & Crow, 1983). Pollution associated with coffee plantations may have lead to the extirpation of Podostemum riciforae at the type locality for the species in Veracruz, Mexico. Domestic sewage is a likely cause for the demise of two species of river-weeds in the Mexican state of Morelos. Herbarium records indicate that species of Marathrum and Tristicha occurred in rivers in Morelos as recently as the mid 1970s, although recent field work in these now polluted rivers suggests both have been extirpated.

Siltation is a particular concern. Siltation increases turbidity, decreasing available light for submersed plants. A layer of silt deposited upon the rocks will likely be detrimental to the initial attachment of the seed and subsequently the seedling. Grubert (1974) has shown that seedlings of Venezuelan species are most apt to be washed from the rock by the current during the initial seedling attachment. Studies of Mexican river-weeds have led us to the same conclusion.

It may be possible for aquatic resource managers in tropical regions to use river-weeds as biological indicators of water quality. However, comparing scanty historical records against current distribution patterns can only suggest their potential in this regard. We are hopeful that comprehensive records compiled from ongoing studies can contribute to a database to help assess changes in water quality in the future. Of course, detailed physiological studies would be needed to define sensitivities of particular species. Biological indicators of this sort could serve as a valuable low-cost means of quickly assessing water quality in tropical rivers.

The Podostemaceae are a fascinating group of aquatic plants that begs the attention of aquatic plant biologists. From an evolutionary perspective, the family remains enigmatic. Issues ranging from the ancestral origin of the family within terrestrial groups, to the ecological and biological factors resulting in the remarkable radiation in such an extreme aquatic environment, remain unexplored. From a conservation or wetland management perspective, river-weeds may hold special promise as biological indicators. Indeed, the habitats that river-weeds occupy, river-rapids and waterfalls, should be viewed as a unique form of tropical wetland with an unique flora (and fauna) and concomitant conservation issues. However, an appreciation of this unique habitat can only be attained after we achieve some degree of understanding of the biota that occur there. This is currently lacking.

1. Rancho Santa Ana Botanic Garden, 1500 N. College Avenue, Claremont, California 91711.
2. Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de Mexico, D.F. 04510.
FROM THE DATABASE

Here is a sampling of the research articles, books and reports which have been entered into the aquatic plant database since November, 1992.

The database has almost 35,000 items. To receive free bibliographies on specific plants and/or subjects, contact AIPRS at the address shown on the mail label on page 16.

To obtain articles, contact your nearest state or university library.

Abbas, J.; El-Oqlah, A.; Mahasneh, A. Herbal plants in the traditional medicine of Bahrain.

Adamec, L.; Ondok, J.P. Water alkaIization due to photosynthesis of aquatic plants: the dependence on total alkalinity.

Ahmer, V.G.; Muller, H.; Heinrich, G.; I. Aktuelles - wieviel radioaktives caesium enthalten pflanzen und sedimene in steirischen gewassen?
MITT. NATURWISS. VER. STEIERMARK, BAND 122, S. 5-18, 1992. (IN GERMAN, ENGLISH SUMMARY)

Allotta, G.; Monaco, P.; Pinto, G.; et al. Potential allelochemicals from Pistia stratiotes L.

Anonymous Final drinking water criteria document for diquat.

JAPANESE J. CROP SCIENCE 61(2):223-228, 1992. (IN JAPANESE; ENGLISH SUMMARY)

Bain, M.B.; Boltz, S.E. Effect of aquatic plant control on the microdistribution and population characteristics of largemouth bass.

Beckett, D.C.; Aartila, T.P.; Miller, A.C. Invertebrate abundance on Potamogeton nodosus: effects of plant surface area and condition.

Begam, H.H.; Choudhuri, M.A. H2O2 metabolism during senescence of two submerged angiosperms Hydrilla and Oeltestia: changes in enzyme activities in light and darkness.

Bertness, M.D.; Shumway, S.W. Consumer driven pollen limitation of seed production in marsh grasses.

Bischler-Causse, H.; Boisselier-Dubayle, M.C. Lectotypification of Marchantia polymorpha L.

Boeger, R. The influence of substratum and water velocity on growth of Ranunculus aquatilis L. (Ranunculaceae).

Bolduan, B.R. An examination of potential internal nutrient tie-up in Potamogeton crispus in a eutrophic South central Minnesota lake.
MANKATO STATE UNIVERSITY, MANKATO, MINNESOTA, 1992.

Brock, T.; Van Vierssen, W. Climatic change and hydrophyte-dominated communities in inland wetland ecosystems.

Brock, T.; Crum, S.; Wijngaarden, R.; et al. Fate and effects of the insecticide Dursban 4E in indoor Elodea dominated and macrophyte free freshwater model ecosystems: I. Fate and primary effects of the active ingredient chlorpyrifos.

Buckingham, G.R. Role of quarantine facilities in biological control.

Callaway, J.C.; Josselyn, M.N. The introduction and spread of smooth cordgrass (Spartina alterniflora) in south San Francisco Bay.

Chasan, R. Ceratopteris: a model plant for the 90's.

Cilliers, C.J. Biological control of water lettuce, Pistia stratiotes (Araceae), in South Africa.

Clarke, P.J.
Predispersal mortality and fecundity in the grey mangrove (Avicennia marina) in southeastern Australia.

Constable, J.V.H.; Grace, J.B.; Longstreth, D.J.
High carbon dioxide concentration in aerenchyma of Typha latifolia.

Cowie, N.; Sutherland, W.; Dilthogo, M.K.M.; James, R.
The effects of conservation management of reed beds. II. The flora and litter disappearance.

Cox, C.
When ignorance is not bliss: secret "inert" pesticide ingredients.
J. Pesticide Reform 12(3):2-5

Creager, R.A.
Seed germination, physical and chemical control of catclaw mimosa (Mimosa pigra var. pigra).

Creed, R.P.; Sheldon, S.P.; Cheek, D.M.
The effect of herbivore feeding on the buoyancy of Eurasian watermilfoil.

Crowder, A.; St.-Cyr, L.
Iron oxide plaques on wetland roots.

Cui, Y.; Liu, X.; Wang, S.; Chen, S.
Growth and energy budget in young grass carp, Ctenopharyngodon idella Val., fed plant and animal diets.

Das, S.; Ray, B.; Ghosal, P.K.
Structural studies of a polysaccharide from the seeds of Nelumbo nucifera.

DeRidder, F.
Population dynamics of the long-leaved sundew (Drosera intermedia Hayne) in different heathland habitats.

Donato, J.
Fitoplancton y aspectos fisicos y quimicos de la laguna de Chingaza en Cundinamarca, Colombia.
Caldasia 16(79):489-509, 1991. (In Spanish: English Summary)

Duarte, C.M.
Nutrient concentration of aquatic plants: patterns across species.

Dyer, J.R.; Forgie, D.; Martin, B.B.; Martin, D.F.
Effects of selected copper (II)-chelate compounds on the rates of production of oxygen by filamentous algae.

Eckert, C.G.; Barrett, S.C.H.
Stochastic loss of style morphs from populations of tristylos Lythrum salicaria and Decodon verticillatus (Lythraceae).

El-Gholl, N.E.; Proffer, T.J.; Schubert, T.S.
Cercospora orisirae sp. nov., the cause of a spot disease on emersed leaves of Eichhornia orisirae in Florida.

Frenzel, P.; Rothfuss, F.; Conrad, R.
Oxygen profiles and methane turnover in a flooded rice microcosm.

Friday, L.E.
Measuring investment in carnivory: seasonal and individual variation in trap number and biomass in Ultricularia vulgaris L.

Geber, M.; Watson, M.; Furnish, R.
Genetic differences in clonal demography in Eichhornia crus-galli.

Gnam, R.S.
Wetland bills swamp congress.

Gnanapragasam, S.; Vasil, I.K.
Ultrastructural changes in suspension culture cells of Paspalum maximum during cryopreservation.

Golub, V.B.; Saveljeva, L.F.
Vegetation of the lower Voiga limans (basins without outflow).

Goncalves, E.P.R.; Boaventura, R.A.R.; Mouvet, C.
Sediments and aquatic mosses as pollution indicators for heavy metals in the Ave River basin (Portugal).

Grill, P.; Van Wijck, C.; Boy, V.
Transferring sediment containing intact seed banks: a method for studying plant community ecology.

Grosse, W.; Bauch, C.
Gas transfer in floating-leaved plants.

Gunn, G.J.; Rafferty, A.G.; et al.
Fatal canine neurotoxicosis attributed to blue-green algae (cyanobacteria).

Gupta, M.; Devi, S.
Cadmium sensitivity inducing structural responses in Salvinia molesta Mitchell.

Hafez, M.B.; Hafez, N.; Ramadan, Y.S.
Uptake of cerium, cobalt and cesium by Potamogeton crispus.

Haraguchi, H.; Hashimoto, K.; Yagi, A.
Antioxidative substances in leaves of Polygonum hydropiper.

Harper, D.
The ecological relationships of aquatic plants at Lake Naivasha, Kenya.

Hawes, J.; Howard-Williams, C.; Weil, R.; Clayton, J.
Invasion of water net, Hydrodictyon reticulatum: the suprising success of an aquatic plant new to our flora.

Hogenbirk, J.; Wein, R.
Temperature effects on seedling emergence from boreal wetland soils: implications for climate change.
Huebert, D.B.; Shay, J.M.
The effect of EDTA on cadmium and zinc uptake and toxicity in *Lemna trisulca* L.

Huener, J.D.; Kadlec, J.A.
Macroinvertebrate response to marsh management strategies in Utah.

Husak, S.; Gorbik, V.P.
Macrophyte biomass in the Kiev Reservoir.

James, E.K.; Minchin, F.R.; Sprent, J.I.
The physiology and nitrogen-fixing capability of aquatically and terrestrially grown *Nuphar plena*: the importance of nodule oxygen supply.

Julien, M.H.; Chan, R.R.
Biological control of alligator weed: unsuccessful attempts to control terrestrial growth using the flea beetle *Disonycha argentinensis* (Col.: Chrysomelidae).

Koornjouw, R.; Gulati, R.D.
Macrofauna and its ecology in Lake Zwemlust, after biomanipulation. II. Fauna inhabiting hydrophytes.

Kouki, J.

Kovach, C.W.; Kurdziel, J.P.; Bowman, R.; Wagner, J.; et al
The effects of stress and disturbance on proximate composition, allocation of production, photosynthesis, respiration, and chlorophyll levels in *Hygrophila polysperma* (Roxb.) Anders. (Acanthaceae).

Kurihara, M.; Ikusima, I.
The ecology of the seed in *Trapa natans* var. *japonica* in a eutrophic lake.
Orr, B.K.; Resh, V.H.

Pedrozo, F.; Díaz, M.; Bonetto, C.

Perfetta, J.

Pires-O’Brien, M.J.

Pozo, J.; Colino, R.

Rader, R.B.; Richardson, C.J.

Ramírez, C.; San Martin, C.; Medina, R.; et al

Raspopov, I.M.
Characteristics of the Lake Ladoga ecosystem.

Rejmankova, E.; Savage, H.M.; Rodriguez, M.H.

Ridge, R.W.; Sack, F.D.

Rohlfisich, O.

Schmidt-Mumm, U.
Aportes a la flora vascular acuatica del parque nacional natural Chingaza (Colombia), I. Potamogetonaceae. CUA. DIVULG. 8:1-10, 1991. (IN SPANISH; ENGLISH SUMMARY)

Scribailo, R.W.; Tomlinson, P.B.

Smits, A.J.M.; Schmitz, G.H.W.; Van der Velde, G.

Stockey, A.; Hunt, R.

Thunberg, E.M.; Pearson, C.N.; Milon, J.W.

Tsuchiya, T.

Turner, R.E.
Geographic variations in salt marsh macrophyte production: a review.

Van Wijck, C.; de Grool, C.J.; Grillas, P.

Voesenek, L.A.C.J.; Blom, C.W.P.M.

Wang, Y.; Hwang, K.; Hsieh, Y.; Chen, Y.

West, M.M.; Lott, J.N.A.; Murray, D.R.

Wiegleb, G.; Brux, H.; Herr, W.

Wijte, A.H.B.M.; Gallagher, J.L.

Wilson, S.D.; Keddy, P.A.

Wright, R.M.; Phillips, V.E.

Zedler, P.H.; Black, C.
BOOKS/REPORTS

THE MURRAY edited by N. Mackay and D. Eastburn, Murray Darling Basin Commission, Canberra, Australia. 1990. 363 pp. (Order from CSIRO Publications, P.O. Box 89, East Melbourne, Victoria 3002, AUSTRALIA. US$35.00 + 10% postage/handling.)

The United Nations definition of "sustainable development" is that it "meets the needs of this generation without making it difficult or impossible for future generations to fulfill their own needs."

This well-produced full-color book is about the sustainable development of the River Murray of South Australia. The Murray Basin provides water to 90% of the population and comprises the "agricultural heartland" of the state.

The book compiles information from diverse scientific papers and technical reports about the basin. It contains everything about the river, from the geology of its headwaters to the history of its channels, from its water chemistry to the distribution of plants and animals along its 2,500 km length.

We have not seen such a complete, handsome and readable treatment about any other water body, anywhere.

This book being one volume in the Handbook of Vegetation Science series, it contributes to a "better understanding of the environmental conditions offered to plant life by inland waters, of the characteristics and adaptations of the plants which colonize the latter, and of the structural and functional features of their plant communities." The book features 11 articles by the world's best known aquatic plant researchers.

(Order according to US region, from Resource Management Group, Inc., P.O. Box 487, Grand Haven, MI 49417-0487. (616) 847-1680. US$15 + $2 shipping/handling.)

These guides are regional versions of the National List of Scientific Plant Names. Each guide includes in alphabetical order the scientific names, common names and the indicator status for each wetland plant species.

TOXIC BLUE-GREEN ALGAE, a report by the National Rivers Authority, London, 1990. 127 pp. (Order from National Rivers Authority, Kingfisher House, Goldhay Way, Orton Goldhay, Peterborough PE2 9SR, United Kingdom. 15 pounds sterling, including postage/handling.)

During the late summer of 1989, dogs and sheep living around a large public water reservoir in England began to die. Authorities quickly traced the deaths to Microcystis aeruginosa, a toxic blue-green algae. A few days later two soldiers were hospitalized with serious symptoms. They had been canoeing and swimming in another lake, and were stricken by the same toxic algae.

As a result of these well-publicized episodes, the National Rivers Authority commissioned a report about toxic blue-green algae. This report is "the first major appraisal of the subject as a whole within the UK."

Included in the report are chapters about algae blooms and toxicity, and about the influence of nutrients and biotic factors on blooms. Also included are chapters about algae control and management, and about research thrusts and recommendations. It is a thorough review of what is known about toxic blue-green algae.

"This book addresses basic questions concerning the ecological relationships and current conditions of the major river systems in Florida." The 13 chapters include general information about the physical environment of rivers, how tidal rivers work, and the plants and animals found in various rivers. Also included are chapters dealing specifically with the Oklawaha River, the St. Johns River, the Everglades, the Lower Peace River, the Apalachicola and the Choctawhatchee.

This book is an excellent source of data and references about all aspects of the rivers of Florida.

This final report describes the "impressive" success of the water lettuce weevil in controlling water lettuce infestations at two south Florida sites. Results at a third site were not so impressive.

At one success site, 1,600 weevils became 42 million weevils within two years, completely eliminating 10 acres of water lettuce. At another, 69,000 weevils became 45 million within one year, reducing a water lettuce infestation from 50 acres to less than 5. At the not-so-successful site, 6,600 weevils never became more than 84,000 during two years, and had little impact on the plants.

(For ordering information, contact Dr. Santiago Cirujano Bracamonte, CSIC, Real Jardín Botánico, Plaza de Marfillo, 2, 28014, Madrid, SPAIN.)

The purpose of the book was to collect "basic botanical criteria to assess our wetlands." It lists all "trustworthy" references to the aquatic plants of the wetlands, ponds and lakes of the Iberian Peninsula and the Baleares Islands. It includes an extensive bibliography and indexed plant lists for 444 major lakes and wetlands. The authors recognize lakes and wetlands of national and European importance.

This book includes sixty selected papers from the Third International Conference on the Conservation and Management of Lakes ("Balaton '88"), held in Keszthely, Hungary, 11-17 September 1988, sponsored by the United Nations Environment Programme (UNEP) and the International Lake Environment Committee (ILEC).

Papers are included in the following sections, followed by case studies: Eutrophication and its Control, Acidification and Toxic Pollutants, Lake Protection Over the World, Management of Shallow Waters and Lake Management as an Ecological, Economic and Jurisdictional Complex.

(Among the papers is an excellent review of the concept of eutrophication by R.A. Vollenweider, the author of one of the most widely used models in all science.)

Aquatic bryophytes live in the water, often in shaded streams and creeks. They include mosses such as Fontinalis spp. and liverworts such as Riccardia spp. Bryophytes may be attached to rocks and logs, or may be free-floating streamers.

This book is all about the bryophytes of the Iberian peninsula. It includes a catalog and distribution maps and discusses the geology and water chemistry of the rivers in which they live. Also included are studies on the photosynthesis of bryophytes, their pigment composition, and effects of pollution on bryophyte growth. It is completed with an extensive bibliography of the worldwide literature.

When there is pollution of aquatic ecosystems, much of it settles into the submersed sediments. Therefore, research and regulatory effort is being spent on assessing sediment toxicity. This textbook presents much information on sediments and toxicity assessment.

It includes chapters on assessing quality; sediment variability; sediment collection and processing; assessment using estuarine, marine and freshwater community structures; testing using aquatic bivalves; predicting and testing bioaccumulation; and a discussion of the US EPA sediment management strategy. The book also includes case studies of contaminated sediments in Puget Sound (Washington) and the Elizabeth River (Virginia).

The Insect (v, 1.0) program was developed to help evaluate how environmental conditions affect the growth and development of water hyacinth and water hyacinth weevils (Neochetina spp.) in a biological control system. The user selects and inputs variables including weather, initial plant biomass, insect life stage and time. Simulation results are output in the form of graphs. The program runs on MS-DOS computers with math coprocessors and 260 KB of RAM.

Free Drawings Available

Large-format drawings of more than 60 aquatic plants are available free of charge from APIRS to anyone who needs them. See Page 3 for more information.
MEETINGS

20TH ANNUAL CONFERENCE ON WETLANDS RESTORATION AND CREATION. May 13-14, 1993, Sheraton Grand Hotel, Tampa, Florida.

This is a forum for the exchange of research results in the restoration, creation, and management of freshwater and coastal wetlands systems. For information, contact F.J. Webb, Hillsborough Community College, Plant City Campus, 1206 N. Park Road, Plant City, FL 33566, 813-757-2104.

The theme for this joint meeting is: Freshwater, Marine and Wetland Interfaces: Dynamics and Management. Field trips to peatlands, wetlands, and fresh and saline lakes will be featured. For information, contact Lyndon Lee, L.C. Lee & Associates, Inc., 221 1st Avenue West, Suite 415, Seattle, WA 98119, 206-283-0673.

2ND SYMPOSIUM ON THE SOCIAL AND ECONOMIC DEVELOPMENT OF WETLANDS. Fall 1994, Science Academy of Cuba, Matanzas, CUBA.

The purpose of the meeting is to bring together biologists, geologists, ecologists and engineers to discuss ways to "save wetlands for the future."

OXYGEN AND ENVIRONMENTAL STRESS IN PLANTS, 1st International Conference. September 6-10, 1993, University of St. Andrews, SCOTLAND.

The sessions of this conference will cover the effects of ozone and atmospheric chemistry on plants, free radicals in plants, plant survival in anoxic environments, and effects of ionizing radiation.

For more information, contact Dr. B.A. Goodman, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK.

EWRS 9TH INTERNATIONAL SYMPOSIUM ON AQUATIC WEEDS. 12-16 September 1994, Trinity College, Dublin, IRELAND.

The European Weed Research Society organizes the aquatic weed symposium every four years. As have the previous eight, the upcoming symposium relates to the biology, ecology, spread and control of aquatic weeds in temperate and tropical climates.

Of particular concern this time are the effects aquatic weeds have on the functioning of aquatic ecosystems, natural biological community processes and man's use of water. Scientists, engineers, managers, conservationists and environmentalists will all find a forum where they can meet in comfortable surroundings and exchange ideas.

For more information, contact Dr. Joe Caffrey, Central Fisheries Board, Mobhi Road, Glasnevin, Dublin 9, IRELAND.

The Light Pipette

A new device has come on the market for computer-assisted studies of photosynthesis. Designed for both aquatic and terrestrial applications, it is called the "Light Pipette." It is manufactured by ILLUMINOVA AB of Uppsala, Sweden.

According to Dr. Erik Brammer, until now there has been no way to honestly measure quantum yield or light utilization efficiency in photosynthetic research, and no way to replicate exact light conditions from one experiment to the next. He points out that this is especially peculiar since it has long been taken for granted that length, mass, time and temperature are measured in micrometers, micromills, and centigrees. Brammer states that "it is high time not only to correctly measure but also to accurately simulate and manipulate selected light fluxes" in photosynthetic and other plant physiology research.

The Light Pipette has a patented optical assembly (a "light homogenizer") that is able to simulate the spectral and quantitative requirements of photosynthetically active radiation (PAR) of sunlight. The Light Pipette may be set to photon flux densities between 0 and 3000 micromoles of quanta per meter square and second. This makes it possible to simulate any sequence of "natural" light needed for photosynthetic research. The device also has slots for standard filters and space for light shutter mechanisms.

On-line computer monitoring and control of the Light Pipette is achieved through the computer program, CAMP (Computer-Assisted Monitoring of Photosynthesis). This IBM-compatible program also stores data files for graphic analysis and/or printout.

For more information about this new device, contact Erik Brammer, Ph.D., Managing Director, ILLUMINOVA AB, Box 23051, S-750 23 Uppsala, SWEDEN.
Examining A Natural Invention

Nature provides many models for man's technological developments—the sonar of bats, the skin of dolphins, the hair of goats. Here is another one—the structure of the cattail leaf.

Considering that a cattail leaf is only an inch or two wide and up to eight or nine feet long, how is it able to stand upright? And how is it that it still stands even after terrific wind storms? The answers are in its structure.

In a recent issue of the Botanical Journal of the Linnean Society, Ursula Rowlatt (Kew Botanical Gardens) and Henry Morshhead (Department of Aeronautics, Imperial College of Science) closely examined the structure of the cattail leaf (Typha latifolia). As the researchers point out, the cattail leaf is built remarkably like airplane wings and helicopter blades. Or rather the other way round.

The leaf is flat on the inner surface and rounded on the outer surface through most of its length. Inside, the leaf is made of multiple columns of rectangular compartments, giving the leaf a "closed-box rigidity".

It is strengthened width-wise by thin diaphragms of various thicknesses, that separate the rectangular compartments. As an engineer might do, the diaphragm thicknesses are ordered in a strict sequence of eight which imparts maximum strength. The 1st, 3rd, 5th and 7th diaphragms are thin; the 2nd, 4th, and 6th diaphragms are thicker; and the 8th diaphragm is always the thickest.

The leaf is strengthened and held length-wise by numerous parallel fibrous strands. These tiny cables give the cattail leaf its finely ribbed exterior surface.

Another important structural characteristic of the cattail leaf is its twist. Along its length, the cattail leaf twists clockwise and upward one and one-quarter to one and one-half turns (450° to 540°). The researchers conclude that the twist is why the cattail leaf can withstand strong winds: the twist greatly minimizes the lift and drag from the wind. As a result, the net sideways force from the wind is close to zero.

The researchers also describe how the "soft mounting" of the cattail plant, (its tangled rhizomes), absorbs much of the wind energy it receives.

Rowlatt and Morshhead interpret these findings in terms of advanced construction: "it may be regarded as a light weight cantilever beam mounted vertically...Such a sandwich-type construction is frequently used in the aerospace industry where high stiffness and low weight are required." Such places include airplane wings and helicopter rotor blades.

If you wish to know more about the details of the cattail leaf structure, and how each structural component shares the weight and other force loads, and an analysis of its "bending moment", "static, dynamic and compression loads", and "shear webs", see "Architecture of the leaf of the greater reed mace, Typha latifolia L., Bot. J. Linnean Soc. 110:161-170, 1992."
AQUAPHYTE

This is the newsletter of the Center for Aquatic Plants and the Aquatic Plant Information Retrieval System (APIRS) of the University of Florida Institute of Food and Agricultural Sciences (IFAS). Support for the information system is provided by the Florida Department of Natural Resources, the U.S. Army Corps of Engineers Waterways Experiment Station Aquatic Plant Control Research Program (APCRP), the St. Johns River Water Management District, and IFAS.

EDITORS: Victor Ramey
Karen Brown

AQUAPHYTE is sent to 4,500 managers, researchers and agencies in 87 countries. Comments, announcements, news items and other information relevant to aquatic plant research are solicited.

Inclusion in AQUAPHYTE does not constitute endorsement, nor does exclusion represent criticism, of any item, organization, individual, or institution by the University of Florida.

Lake Melaleuca (aka Lake Okeechobee)

At left above is a healthy stand of exotic melaleuca trees (Melaleuca quinquenervia) growing in the waters of Lake Okeechobee, Florida. Fast-growing saplings surround the larger trees. At right, Ms. Jackie Jordan (Florida DNR) stands knee-deep in water at the base of a larger clump of melaleuca trees in the lake. (See story on page 2.)