Biological control of *Lygodium microphyllum*: Updates on Quarantine Host Range Testing and Post-Release Evaluation

Melissa C. Smith
Greg Wheeler
Ellen Lake
Phil Tipping

USDA-ARS Invasive Plant Research Lab, Ft Lauderdale, FL
FWC Research Update, March 4, 2015
Old World Climbing Fern in Florida
Lygodium in Conservation Areas

Flatford Swamp

Greenswamp Wilderness Preserve

A.R.M. Loxahatchee NWR

Everglades National Park
L. microphyllum reproduction

Propagule pressure:

• Each sorus has ~ 215 spores
• Each fertile leaflet has ~ 133 sori
• 215 X 133 = 28,500 spores per fertile leaflet (Volin et al. 2004)
Biological Control on *Lygodium*

- Program initiated in 1995 (Goolsby & Pemberton)
- Focus on SE Asia & Australia
 - Monthly surveys in QL
- 20 herbivores collected
 - 11 Lepidoptera
 - 4 Coleoptera
 - 1 Hymenoptera
 - 1 Homoptera
 - 1 Hemiptera
 - 1 Thrips
 - 1 Mite
Biological Control on *Lygodium*

Relative abundance of herbivore collections on *Lygodium microphyllum* (Goolsby et al. 2003)
Biological Control on *Lygodium*

Approved Agents:

Austromusotima camptozonale
Released 2005 – 2012
Failed to establish

Neomusotima conspurcatalis
Released 2008 – Present
Established in South and Central Florida

Floracarus perrepae
Released 2009 – Present
Established in South Florida
Biological Control on *Lygodium*

Agents undergoing host-range testing in quarantine:

Lygomusotima stria
Colony established in 2010
Testing:
• Multiple generation tests on *Lygodium* congeners (*L. palmatum, L. volubile*)
• Cold-tolerance (for northern viability)

Neostrombocerus albicomus
Colony arrived in 2005, reestablished in 2013
Testing:
• Multiple generation tests on *Lygodium* congeners (*L. palmatum, L. volubile*)
Post Release Evaluation

2008 - 2009
Post Release Evaluation

Current CERP releases 2015

Write a description for your map.
Neomusotima in the field
Neomusotima post-release impact

Feeding preference

• Do *N. conspurcatalis* larvae preferentially feed on fertile fronds?
• Effects of fertile frond feeding on spore germination
• Effects of fertile frond feeding on larval development time
Neomusotima research

Feeding preference

- Larvae are either given choice (1 fertile frond + 1 sterile frond) OR no-choice (2 fertile or sterile fronds)
- Record area consumed
 - Instar (head capsule)
Choice Feeding Trial

Leaf

Cm² consumed per individual

Fertile
Sterile

Fertile
Sterile

Fertile
Sterile

Fertile
Sterile

Fertile
Sterile

a*
b*
a*
b*
No-Choice Feeding Trail

Cm² consumed per individual

Leaf

Fertile A
Sterile A
Fertile B
Sterile B
Fertile C
Sterile C
Fertile D
Sterile D
Fertile E
Sterile E

a* Fertile
b* Fertile
a* Fertile
b* Fertile

Fertile
Sterile

Legend:
Oviposition Preference Trial

![Graph showing larval production per female for fertile and sterile leaf types. The fertile leaf type produces significantly more larvae than the sterile leaf type, indicated by the letter 'a*' for fertile and 'b*' for sterile.]
Post-Release Evaluation: Integrated weed management

• Control
• *Neomusotima* only
• Herbicide only
• *Neomusotima* and herbicide
• Future plans:
 – Fire
 – Mites
Neomusotima in Florida communities

- Parasitism
- Indirect effects
 - Parasitoid spillover
- Range expansion
 - Modeled
 - Realized
F. perrepae releases 2008
F. perrepae range 2015

Range surveys planned for 2015
Future Directions

• MORE MITES!
 – Extensive surveys of AU and FL for matching fern haplotypes
 – Recollect mites from AU → rapid screening for release in FL
Future directions: *F. perrepae*

- Re-assess impact *in-situ*
- Develop integrated management plan
 - Mites rapidly/readily recolonize post-fire